An Improved Differential Evolution Algorithm for Multi-objective Optimization Problems
نویسنده
چکیده
In this paper, an improved multi-objective differential evolution algorithm(IDEA) is proposed for multi-objective optimization problems. In IDEA, the select operator combines the advantages of DE with the mechanisms of Pareto-based ranking and distance density, besides, a randomly migration strategy is proposed. IDEA is implemented on four classical multi-objective problems, the simulation results indicate that the proposed IDEA efficiently achieves two goals of multi-objective optimization problems: find the solutions converse to the true Pareto-front and uniform spread along the front.
منابع مشابه
Optimization of the Prismatic Core Sandwich Panel under Buckling Load and Yield Stress Constraints using an Improved Constrained Differential Evolution Algorithm
In this study, weight optimization of the prismatic core sandwich panel under transverse and longitudinal loadings has been independently investigated. To solve the optimization problems corresponding to the mentioned loadings, a new Improved Constrained Differential Evolution (ICDE) algorithm based on the multi-objective constraint handling method is implemented. The constraints of the problem...
متن کاملPareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملPareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملOptimization of Thermal Instability Resistance of FG Flat Structures using an Improved Multi-objective Harmony Search Algorithm
This paper presents a clear monograph on the optimization of thermal instability resistance of the FG (functionally graded) flat structures. For this aim, two FG flat structures, namely an FG beam and an FG circular plate, are considered. These structures are assumed to obey the first-order shear deformation theory, three-parameters power-law distribution of the constituents, and clamped bounda...
متن کامل